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Abstract

A direct numerical simulation of fully developed turbulent ¯ow in a channel is used to study passive scalar
transport in the immediate vicinity of a wall. The Reynolds number, based on the channel half-height and friction
velocity, is 150 and the Prandtl number is varied from 1 to 10. DNS results and experimental measurements of mass

transfer rates at high Schmidt numbers are used to investigate the e�ect of Schmidt or Prandtl number. The
wavenumber spectra for temperature ¯uctuations show a damping of the contributions of large wavenumbers with
increasing Schmidt or Prandtl number. This result suggests that the analogy between momentum and scalar

transport cannot be used to de®ne the limiting behavior of turbulent di�usivity for y40: Furthermore, this limiting
relation cannot be used to calculate the concentration or temperature pro®le since it is applicable only in the
conductive sublayer, where turbulent transport is not important. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Turbulent transfer; Large Prandtl number; Large Schmidt number; Direct numerical solutions; Channel ¯ow; Limiting

behavior close to wall

1. Introduction

One of the ingredients in understanding turbulent

transport of a scalar between a ¯owing ¯uid and a ¯at

solid surface is the de®nition of the limiting behavior
of the ¯uctuating temperature and velocity ®elds close

to a wall. This understanding becomes particularly im-
portant at high Schmidt (Sc ) or Prandtl (Pr ) numbers,

for which almost all of the change of mean tempera-

ture or concentration can occur in the viscous sub-
layer. The usual approach is to employ Taylor series

representations of the velocity and scalar ®elds in the

neighborhood of y40, where y is the distance from

the wall [1±3]. This has led to the ®nding that the tur-

bulent kinematic viscosity, nt, varies as y3 for y40:
The use of the analogy between momentum and scalar

transport then gives the turbulent di�usivity as Dt0y3,

with the proportionality constant being independent of

Pr or Sc. This result has been widely used in heat

transfer studies [4]. At large Pr it has been assumed to

de®ne turbulent transport throughout the entire tem-

perature pro®le.

Mass transfer data at large Sc have been interpreted

by assuming Dt0ym over the whole concentration

boundary layer where m � 3 or 4 [1,5±8] and the pro-

portionality constant is independent of Sc. A mass bal-

ance equation gives K=u�0Scÿ�mÿ1=m�, where K is the

mass transfer coe�cient and u� is the friction velocity.

Electrochemical methods have been used to obtain
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measurements of mass transfer rates [9±11] at large
Schmidt numbers. They give the surprising (and,
maybe, controversial) results that K=u�0Scÿ0:7 and

that m is not a whole number. This ®nding is hard to
reconcile with the Taylor series approach outlined in
the paragraph above. Consequently, there has been a

need to examine more carefully the limiting behavior
of the scalar and velocity ®elds in the limit of y40:
This paper uses direct numerical simulations at

Pr � 1, 3 and 10 to look at the e�ect of Prandtl
number on the spatial variation of the mean-square
of the ¯uctuating temperature, y2, of the Reynolds
transport, yv, and of the turbulent di�usivity in the

immediate vicinity of the wall. The system con-
sidered is the fully developed velocity and tempera-
ture ®elds that exist in a channel in which the

bottom wall is held at temperature �Tw and the
top wall at ÿTw: The Reynolds number, based on
the half height of the channel, and the centerline

velocity is 2670. Since the velocity and temperature
®elds are fully developed, heat ¯uxes at di�erent
distances from the wall are the same.

The dimensionless mean square temperature ¯uc-
tuations, y2= �T

2
, the correlation coe�cient, Ryv, and

turbulent di�usivity are found to decrease with

increasing Prandtl number for y40: These results
are explained by examining the wavenumber spectra
for yv and y2: Close to the wall, these show a

damping of the contributions of large wavenumbers,
as had previously been suggested by Shaw and
Hanratty [9], by Campbell and Hanratty [10] and
by Hanratty and Vassiliadou [11]. These results lead

to the conclusion that the analogy between momen-
tum and scalar transport cannot be used to de®ne
the limiting behavior of the turbulent di�usivity for

y40:
The relationship of this work to previous treatments

of scalar transfer at large Schmidt or Prandtl numbers

Nomenclature

c ¯uctuation in the concentration
�C time-averaged local concentration
cp speci®c heat at constant pressure

D molecular di�usivity
Dt turbulent di�usivity
H half channel height normalized with wall

variables
k ¯uctuation in the mass transfer coe�cient

normalized by the friction velocity

K mass transfer coe�cient
�K time-averaged mass transfer coe�cient
kx streamwise wavenumber normalized with

wall variables

n frequency normalized with wall variables
P pressure
Px streamwise pressure gradient

Pr Prandtl number
Prt turbulent Prandtl number
q local heat ¯ux

qw heat ¯ux at the channel wall
Sc Schmidt number
Ryv correlation coe�cient between y and v

T temperature normalized by the friction
temperature � �T� y

�T mean temperature normalized by the fric-
tion temperature

Tw temperature at the wall
T� friction temperature = qw=rcpu

�

t time

u velocity vector in wall units
u, v, w ¯uctuating velocity components in wall

units in the x, y, z directions
u� friction velocity
�U mean streamwise velocity normalized by

the friction velocity
Uc convection velocity of temperature ®eld

normalized by the friction velocity

Uo centerline velocity normalized by the fric-
tion velocity

Wkk spectral density function for k2 normalized

with wall variables
Wuv spectral density function for v normalized

with wall parameters
Wyy spectral density function for y2 normalized

with wall variables
Wyv co-spectral density function for yv normal-

ized with wall variables

x, y, z streamwise, normal and spanwise coordi-
nates in wall units

Greek symbols
Dy thickness of the conductive layer

n kinematic viscosity
nt turbulent kinematic viscosity
ooo vorticity vector
P pseudo pressure

f�kx, n� two-dimensional spectral density function
for �y

2

r ¯uid density

y ¯uctuating temperature normalized by the
friction temperature
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is also explored. The practice of representing the tur-
bulent di�usivity as being proportional to the turbu-

lent viscosity, obtained from its limiting relation, can
be criticized on two counts: (1) The turbulent Schmidt
or Prandtl number is a�ected by the molecular

Schmidt or Prandtl number. (2) The limiting relation
for scalar transport holds only in a region where tur-
bulent transport is negligible compared to molecular

transport, and not over the entire scalar boundary
layer. A consequence is that the usual practice of
assuming that the dimensionless transport rate varies

as Scÿ2=3 or Scÿ3=4 at large Sc or Pr does not have a
theoretical foundation. Some speculative arguments
are presented to justify the empirical relation,
Dt0y3:38, given by Shaw and Hanratty [9] and by

Papavassiliou and Hanratty [12,13] to represent turbu-
lent concentration pro®les at very large Sc or Pr.

2. Methodology

Numerical solutions are obtained for the three-
dimensional, time-dependent Navier±Stokes equation
in a skew-symmetric form and for the advection-di�u-

sion equation.

@u

@ t
� �u� ooo� ÿ rPÿ Pxex � r2u �1�

@T

@ t
ÿ u � rT� 1

Pr
r2T, �2�

where

o � r � u �3�

P � Pÿ Pxx� u � u
2

�4�

and u and P denote the velocity vector and the static

pressure. All variables are made dimensionless by
using wall variables. Solutions of Eqs. (1) and (2) are
obtained, which are periodic in the streamwise and

spanwise directions, by using the algorithm described
by Lyons et al. [14]. The Reynolds number based on
the friction velocity, u�, and the half-channel height,
H, is 150. In presenting the results, x, y, z and u, v, w

represent coordinates and velocity components made
dimensionless by wall variables in the streamwise, the
wall-normal and the spanwise directions. Temperature

T is made dimensionless with the friction temperature,
T � � qw=rcpu

�:
The results for Pr � 10 are for an x, y, z grid of 128

� 193 � 128. The resolution in the y-direction varied
from Dy � 0:02 at the wall to Dy � 2:45 at the center
of the channel. The resolutions in the x and z direc-

tions were Dx � 15, Dz � 7:5, respectively. A time of
about 800 n=u�2 was required to reach a stationary

state. The time interval used to calculate statistics was
715 n=u�2: Averaging was also carried out in the x and
z directions so the results vary only with y. A memory

of 2 gigabytes was required on a HP/Convex Exem-
plar-X. Computer runs were also carried out with
grids of 128� 257� 128 and 128� 193� 256 to ensure

adequacy of the resolution. These computations were
performed for long enough time to get reasonable
mean statistics up to second order. The results show

the following: (a) A wall-normal resolution of 193
grids is required; higher resolution in this direction
improves the mean temperature and root-mean square
temperature ¯uctuation only slightly (peak rms tem-

perature ¯uctuations di�er by 1.6%). (b) The use of a
higher resolution in the spanwise direction (256 grid
points) does not produce signi®cant changes to the

®rst-order statistics. The turbulent Prandtl number
near the wall decreased by about 2.7%.
The results for Pr � 1 and 3 were obtained for a 128

� 129 � 128 grid for which Dy varied from 0.045 to
3.68. A time of about 1000 v=u�2 was needed to reach
a stationary state and averaging was done over periods

of 750, 370 v=u�2 for Pr � 1:0 and 3.0, respectively. A
memory of 0.7 gigabytes was needed on a HP/Convex
Exemplar-S.

3. Results from the DNS

3.1. Mean temperatures

Mean temperatures are presented in Fig. 1. The
abscissa is the distance from the bottom wall made
dimensionless with the friction velocity and the kin-

Fig. 1. Mean temperature pro®les in semi-log coordinates,

where �T is made dimensionless with the friction velocity.
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ematic viscosity. The ordinate is the mean temperature,
made dimensionless with the friction temperature,

divided by the dimensionless distance from the wall.
A conductive sublayer, where �T � Pry, exists close

to the wall. The thickness of this sublayer, Dy,

decreases as Pr increases. That is, Dy � 6:0, 3.6 and 1.9
for Pr = 1, 3 and 10. Over this range of Pr, thickness
Dy varies as Prÿ1=2:

3.2. Turbulent di�usivity

A turbulent di�usivity, de®ned as

yv � ÿD
t

n
d �T

dy
�5�

can be obtained from calculations of yv and d �T=dy: It
can be also be calculated from a knowledge of �T�y�
and the heat ¯ux, qw: Since a fully-developed ¯ow is
considered,

q�y� � qw � ÿrcp�D�Dt �d �T

dy
, �6�

where all the terms are dimensional. This can be writ-

ten in a non-dimensional form as

1 � ÿ
�

1

Pr
� Dt

n

�
d �T

dy
�7�

In the calculations, the same value of Dt was obtained
from Eqs. (5) and (7) after a stationary state was
reached.

Values of Dt for Pr � 1, 3, 10 are presented in Fig.
2. The dimensionless turbulent viscosity, nt=n, was
obtained from calculations made with a 128 � 193 �
128 grid. The calculations seem to suggest that the tur-
bulent di�usivity and the turbulent viscosity are equal
for y < 28: However, a closer examination reveals that

the turbulent Prandtl number, Prt � nt=Dt, decreases
with molecular Prandtl number, Pr, for y < 10:

3.3. Limiting behavior for y40

The temperature pro®le for Pr � 10 in Fig. 1 shows

that about 85% of the change occurs for y < 20, so
the modeling of the region close to the wall is import-
ant. This becomes critical at larger Pr where the heat

¯ux is quite small and the temperature gradients in the
central regions (where Dt is large) are negligible. There-
fore, it is of interest to give special consideration to the

calculated temperature ®eld close to the wall. If the
¯uctuating temperature and velocity ®elds are
expanded in Taylor series, the following equations are
obtained for a given Pr:

y � h1y� h3y
3 � � � � �8�

u � b1y� c1y
2 � d1y

3 � � � � �9�

v � c2y
2 � d2y

3 � � � � �10�

uv � b1c2y
3 �

ÿ
b1d2 � c1c2

�
y4 � � � � �11�

where the coe�cients are functions of Pr and time t.
There is no y2 term in the equation for y because
@ 2y=@y2 is identically zero at the wall. Also,

yu � h1b1y
2 � h1c1y

3 � � � � �12�

yv � h1c2y
3 � h1d2y

4 � � � � �13�

y2 � h21y
2 � h1h3y

4 � � � � �14�

The mean streamwise velocity is given as

�U � yÿ 1

2

y2

H
� 1

4
b1c2y

4 � � � � �15�

From Eqs. (5), (7) and (13), the following limiting ex-

pression is obtained for the mean temperature pro®le:

Tw ÿ �T � Pryÿ Pr

4
h1c2y

4 ÿ Pr

5
h1d2y

5 � � � � �16�

Values of

�����
h21

q
,

�����
h21

q
=Pr, h1c2, h1c2=Pr, h1b1, h1b1=Pr

are listed in Table 1. These parameters were calculated

after the time averaged statistics were obtained. For
instance, after dividing yv or Eq. (13), by y3, one can
easily get h1c2 by taking the limit of y40 since only

h1c2 survives on the right hand side of the resulting
equation in the immediate vicinity of the wall.
Fig. 3 gives a plot of yv=y3 versus y. It is noted thatFig. 2. Turbulent di�usivity and turbulent viscosity.

Y. Na, T.J. Hanratty / Int. J. Heat Mass Transfer 43 (2000) 1749±17581752



the region where yv varies with y3 decreases with

increasing Pr. More importantly, it is noted, from this

®gure, that this region lies within the conductive sub-

layer. Therefore, the ®rst term in Eq. (13) is not having

a direct role in determining the mean temperature pro-

®le. A plot of �y2�1=2=y is given in Fig. 4. The regions

in which �y2�1=2=y is constant have slightly shorter

extents than the regions where �Tw ÿ �T�=y is constant

(Fig. 1). A casual comparison of Figs. 1 and 4 suggests

that �y2�1=2=�Tw ÿ �T� for y40 is independent of Pr

and approximately equal to 0.40. However, the closer

examination given in Table 1 indicates that

�y2�1=2=�Tw ÿ �T� could decrease slightly with increasing

Pr for Pr > 3:

The limiting behavior of Dt is given as

Dt

n
� h1c2

Pr
y3 � h1d2

Pr
y4 ÿ c2h3

2

Pr
y5 � � � � �17�

From Table 1, it can be seen that the ®rst term in Eq.

(17) decreases with Pr. This is illustrated in Fig. 5
where Dt=n is plotted against y for Pr � 1 and for
Pr � 10: For Pr � 1 the limiting behavior of Dt is
given as

Dt

n
� 0:00073y3 �18�

This is approximately the same as the limiting behavior
of nt

nt

n
� 0:00079y3 �19�

Fig. 4. Limiting behavior of

�����
y2

q
near the wall.

Fig. 3. Limiting behavior of yv near the wall.

Table 1

Limiting values

Pr 1.0 3.0 10.0�����
h21

q
0.403 1.22 3.93

�����
h21

q
=Pr 0.403 0.405 0.393

h1c2 � 10ÿ3 0.730 2.09 5.03

h1c2=Pr� 10ÿ4 7.30 6.98 5.03

h1b1 0.137 0.372 0.782

h1b1=Pr 0.137 0.124 0.0782

Fig. 5. Turbulent di�usivity close to the wall of the channel

for Pr � 1 and 10.
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The di�erence between Eqs. (18) and (19) might not be
signi®cant and could be the result of using di�erent

numbers of grid points. The limiting behavior for Pr �
10 is signi®cantly di�erent from the one for Pr � 1:

Dt

n
� 0:00053y3 �20�

Since the region where Dt=n0y3 decreases in size as
Prandtl number increases, it might be expected from

Eq. (17) that, in the limit of large Pr, it becomes van-
ishingly small (buried in a very thin conductive sub-
layer) and that Dt=n0ym over most of the scalar

boundary layer, where m is greater than 3. For
Pr � 10, Fig. 5 shows that Dt=n varies roughly as y 3.4

over a large range of y. Thus, limiting relations (18)

and (20) have very little e�ect on the mean tempera-
ture pro®le.
The following expression is obtained for the turbu-

lent Prandtl number by using Eq. (17):

Prt � ÿb1c2Prÿ Pr
�
b1c2=H�

ÿ
b1d2 � c1c2

��
y� � � �

h1c2 � h1d2y� � � �
�21�

The turbulent Prandtl number is given by
ÿb1c2Pr=h1c2 in the limit of y40: Since b1c2 is con-

stant for the Prandtl numbers considered, this leading
term increases with Pr. This implies, for a given nt,
that Dt decreases as Prandtl number increases. Thus,

for Pr� 1, temperature (or concentration) ¯uctuations
are greatly damped by molecular di�usion and the use
of the analogy would lead to an inaccurate description

of the behavior of Dt for y40:

3.4. Spectra

The spectral density functions for y2 are compared
to those for the normal velocity ¯uctuations at y � 0:2
in Fig. 6. It is noted, at large wavenumbers, that ¯uc-

tuations in the temperature at Pr � 1 are strongly
damped relative to ¯uctuations in the normal velocity.
An increase in Pr is associated with a further damping.

This is better seen in Figs. 7 and 8 where the cumulat-
ive contributions of di�erent wavenumbers to y2 and
yv, at y � 0:2, are shown.

Spectra at larger y are di�erent from those in the
immediate vicinity of the wall. This is illustrated in
Figs. 9 and 10, which give plots of the cumulative
spectral density at y � 25: These clearly show that the

contribution from high wavenumbers to y2 increases in
importance as Pr increases. However, the in¯uence of
Pr on the cumulative spectral density function for yv is

relatively small. This is because high wavenumbers do
not contribute signi®cantly to n2 as they do to y2 at
large Pr. Thus, one can expect the correlation,

yv=�y2�1=2�n2�1=2, to decrease as Pr increases at lo-
cations that are not close to the wall.

4. Mass transfer at large Schmidt number

Eulerian methods cannot be used to calculate tem-

perature ®elds at large Pr with presently available com-
puters. However, Papavassiliou and Hanratty [12,13]
have shown how Lagrangian calculations can be car-

ried out if a DNS of the velocity ®eld is available.
Some of their results for a channel ¯ow, at H � 150,
are given in Fig. 11 as points. It is noted that all of the

Fig. 6. Spectral density functions for y2 at y � 0:2:

Fig. 7. Cumulative spectral density functions of y2 at y � 0:2:
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temperature change occurs within the viscous sublayer

at Pr � 100, 500, 2400.
The dashed lines were calculated by assuming the

Dt � nt [15] over the values of y where the concen-

tration is changing. The analogy clearly does not pre-
dict the in¯uence of Pr shown in Fig. 11. The solid
curves were calculated by assuming Dt=n �
0:000463y3:38: This produces the following relation for

the mass transfer coe�cient made dimensionless with
the friction velocity:

�K

u�
� 0:0889Scÿ0:704 �22�

This is in excellent agreement with the extensive lab-
oratory measurements presented by Shaw and Han-

ratty [9] and the recent results of Papavassiliou and
Hanratty [13].
Values of Dt, calculated with the temperature pro-

®les in Fig. 11 and Eq. (7), are compared with the
DNS results (for Pr � 1 and 10) in Fig. 12. Because Dt

was not obtained from direct measurements of Rey-
nolds transport, Papavassiliou and Hanratty [13] were
not able to obtain values in the conductive sublayer.

That is, the limiting behavior of Dt for y40 cannot be
obtained from the calculations of the pro®les of aver-
age concentration. However, this ®gure shows that the

equation Dt=n � 0:000463y3:38 represents an interp-
olation between the limiting behavior at very small y
and the region where Dt � nt:
Frequency spectra for high Sc obtained by Shaw

and Hanratty [16] are compared with the present DNS
result for Pr � 10 in Fig. 13. An increase in Schmidt

number is associated with a marked decrease in the
frequency of the mass transfer ¯uctuations. The mean
frequency, de®ned as

hni � 1

y2

�1
0

nWyy dn, �23�

decreases as the Schmidt or Prandtl number increases
and has a value of about 9.4 � 10ÿ3 for Pr � 10: The
concentration boundary layer acts as a ®lter so the

concentration ®eld does not respond to high frequency
velocity ¯uctuations. This damping increases with
Schmidt number. For high Sc, the spectral function

for the velocity ¯uctuations close to a wall is found to
be constant over the range of frequencies characteriz-
ing the mass transfer ¯uctuations. However, this is not

the case for Pr � 10 (see Fig. 13).
Sirkar and Hanratty [17] have argued that the spec-

tral density function for mass transfer ¯uctuations,
Wkk, at large frequencies is represented by a solution

of a simpli®ed linear form of the mass balance
equation for concentration c,

@c

@ t

"
1ÿ

�U

Uc

#
ÿD

@ 2c

@y2
� ÿvd �C

dy
, �24�

Fig. 8. Cumulative spectral density functions for yv at

y � 0:2:

Fig. 9. Cumulative spectral density functions of y2 at y � 25:

Fig. 10. Cumulative spectral density functions for yv at

y � 25:
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where the following substitution is made:

@

@x
� ÿ 1

Uc

@

@ t
�25�

In order to solve Eq. (24), Sirkar and Hanratty ap-
proximated d �C=dy with �K=Sc and assumed �1ÿ
�U=Uc�11: From this simpli®ed form of Eq. (24), Shaw
and Hanratty [16] obtained the following relation
between the spectral density functions for the velocity,
Wvv, and concentration ¯uctuations.

Wkk � 4Wvv=y
4 �K

2

Sc�2pn�3
�26�

This shows the strong damping of concentration ¯uc-

tuations close to the wall since Wkk0Wvv=n
3: Further-

more, the appearance of Sc in the denominator reveals
that the ®ltering increases with increasing Schmidt
number. For very large Sc, for which Wvv is a con-

stant, Eq. (26) predicts Wkk= �K
2
varies as �n3Sc�ÿ1, in

agreement with measurements. Calculated values of

the dimensionless spectral density function of the tem-
perature ¯uctuations at y � 0:02 for Pr � 10 that have
been normalized with �T

2
are also plotted in Fig. 14.

These also show a ÿ3 slope at large n, but they fall
below the experimental data when plotted in the man-
ner suggested by Eq. (26).
Shaw and Hanratty [16] obtained Wvv�0�=y4 �

9:8� 10ÿ3 from the data in Fig. 14 for high frequen-
cies and Eq. (26). This value is larger than the one
obtained from the DNS data (2.3 � 10ÿ3) shown in

Fig. 11. Dimensionless mean temperature pro®les for high Pr.

Fig. 12. Turbulent di�usivity close to a wall of the channel

for high Pr or Sc. Fig. 13. E�ect of Sc or Pr on frequency spectra near the wall.
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Fig. 13. A plausible explanation is that errors are

introduced by the assumption of �1ÿ �U=Uc�11: If �1ÿ
�U=Uc� is represented by an e�ective average of 0.62,
the spectral density function for Pr � 10 agrees with

Eq. (24) at high frequencies. Vassiliadou's study [18] of
convection velocities of the concentration ®eld for high
Sc gives Uc15 for Sc � 1000: Thus, �U=Uc10:38 gives
�U11:9, which corresponds to a velocity inside the very
thin conductive layer. Figs. 15 and 16 give f�kx, n�
and Uc calculated at y � 0:02 for Pr � 10: The convec-

tion velocities in Fig. 15 were calculated by the follow-
ing de®nition given by Wills [19]:

Uc�kx � � nc�kx �
kx

�27�

where�
@f�kx, n�

@n

�
n�nc�kx �

� 0 �28�

Here, f�kx,n� is the two-dimensional spectral density
function of the temperature ®eld in the immediate
vicinity of the wall. A value of �U=Uc10:38 corre-
sponds to �U13:9 since Uc110:3: This seems reason-

able since �U13:9 corresponds to the edge of the
conductive layer in which the mean temperature shows
a linear behavior.

5. Discussion

For Prr1 and for y > 5, the in¯uence of Prandtl
number on Dt is quite small. A corollary of this obser-
vation is that the use of a turbulent Prandtl number to

relate scalar transport to the velocity ®eld could be a
sensible approach. In fact, the assumption that Dt � nt

is a good approximation in the viscous wall region
beyond y � 5 and in the log-layer. In the outer ¯ow,

Dt > nt and the turbulent Prandtl number depends on
the boundary conditions.
At small y the turbulent di�usivity increases as y3

for all Pr. However, Dt=vy3 decreases weakly with
increasing Pr as y40: This can be understood if it is
recognized that temperature ¯uctuations in this region

are mainly governed by ¯uctuations in the rate of heat

Fig. 15. Convection velocities in the near-wall temperature

®eld at Pr � 10, made dimensionless by centerline velocity,

U0 � 17:8:

Fig. 16. Contours of the wavenumber±frequency spectral den-

sity function, f�kx, n�, of the temperature ¯uctuations for

Pr � 10 and y � 0:02: Contour levels are from 0.5 to 16.5.

Increments of 0.5 are used.

Fig. 14. Frequency spectra plotted in accordance with Eq.

(26).
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transfer at the wall, rather than hydrodynamic mixing
of hot and cold ¯uids.

The thickness of the region where Dt=n0y3

decreases with increasing Pr. However, it always lies in
the conductive sublayer where turbulent transport is

negligible compared to molecular transport; that is,
turbulence in this region is not directly in¯uencing the
mean temperature pro®le. For very large Pr almost all

of the temperature change occurs in the viscous sub-
layer where nt=n0y3: Because of this, the argument is
commonly made that temperature or concentration

pro®les can be calculated by assuming Dt=n0y3: The
results outlined above suggest that this approach is
incorrect.
Close to the wall, ¯uctuations in temperature are

more damped at high wavenumbers than are ¯uctu-
ations in the normal velocity. Thus, the contribution
from high wavenumbers to yv is relatively small. This

explains why the analogy between momentum and
heat or mass transfer cannot be used to de®ne the lim-
iting behavior of Dt for y40: The behavior at larger y

is strikingly di�erent from what is found in the im-
mediate vicinity of the wall since the contribution from
high wavenumbers to y2 increases in importance as Pr

increases.
The major contribution of this paper is that it chal-

lenges theoretical notions that are a bulwark of present
analyses of turbulent scalar ®elds. The limiting beha-

vior of Dt for y40 cannot be given by using the
nt=n0y3 relation and the analogy between momentum
and scalar transport. This limiting relation for Dt can-

not be used to describe turbulent transport at large Sc
or Pr since it is applicable only in the conductive sub-
layer where turbulent transport is not important.
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